Focused Inductive Theorem Proving
نویسندگان
چکیده
Focused proof systems provide means for reducing and structuring the non-determinism involved in searching for sequent calculus proofs. We present a focused proof system for a first-order logic with inductive and co-inductive definitions in which the introduction rules are partitioned into an asynchronous phase and a synchronous phase. These focused proofs allow us to naturally see proof search as being organized around interleaving intervals of computation and more general deduction. For example, entire Prolog-like computations can be captured using a single synchronous phase and many model-checking queries can be captured using an asynchronous phase followed by a synchronous phase. Leveraging these ideas, we have developed an interactive proof assistant, called Tac, for this logic. We describe its high-level design and illustrate how it is capable of automatically proving many theorems using induction and coinduction. Since the automatic proof procedure is structured using focused proofs, its behavior is often rather easy to anticipate and modify. We illustrate the strength of Tac with several examples of proved theorems, some achieved entirely automatically and others achieved with user guidance.
منابع مشابه
Inductive Theorem Proving by Program Specialisation: Generating Proofs for Isabelle Using Ecce
In this paper we discuss the similarities between program specialisation and inductive theorem proving, and then show how program specialisation can be used to perform inductive theorem proving. We then study this relationship in more detail for a particular class of problems (verifying infinite state Petri nets) in order to establish a clear link between program specialisation and inductive th...
متن کاملSome observations on the logical foundations of inductive theorem proving
In this paper we study the logical foundations of automated inductive theorem proving. To that aim we first develop a theoretical model that is centered around the difficulty of finding induction axioms which are sufficient for proving a goal. Based on this model, we then analyze the following aspects: the choice of a proof shape, the choice of an induction rule and the language of the inductio...
متن کاملTheorem Proving for Maude’s Rewriting Logic Vlad Rusu and Manuel Clavel
We present an approach based on inductive theorem proving for verifying invariance properties of systems specified in Rewriting Logic, an executable specification language implemented (among others) in the Maude tool. Since theorem proving is not directly available for rewriting logic, we define an encoding of rewriting logic into its membership equational (sub)logic. Then, inductive theorem pr...
متن کاملTheory Exploration and Inductive Theorem Proving
We have built two state-of-the-art inductive theorem provers named HipSpec and Hipster. The main issue when automating proofs by induction is to discover essential helper lemmas. Our theorem provers use the technique theory exploration, which is amethod to systematically discover interesting conclusions about a mathematical theory. We use the existing theory exploration system QuickSpec which c...
متن کاملTIP: Tons of Inductive Problems
This paper describes our collection of benchmarks for inductive theorem provers. The recent spur of interest in automated inductive theorem proving has increased the demands for evaluation and comparison between systems. We expect the benchmark suite to continually grow as more problems are submitted by the community. New challenge problems will promote further development of provers which will...
متن کامل